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Surface ocean pH is likely to decrease by up to 0.4
units by 2100 due to the uptake of anthropogenic
CO2 from the atmosphere. Short-term experi-
ments have revealed that this degree of seawater
acidification can alter calcification rates in cer-
tain planktonic and benthic organisms, although
the effects recorded may be shock responses and
the long-term ecological effects are unknown.
Here, we show the response of calcareous seagrass
epibionts to elevated CO2 partial pressure in
aquaria and at a volcanic vent area where seagrass
habitat has been exposed to high CO2 levels for
decades. Coralline algae were the dominant con-
tributors to calcium carbonate mass on seagrass
blades at normal pH but were absent from the
system at mean pH 7.7 and were dissolved in
aquaria enriched with CO2. In the field, bryozo-
ans were the only calcifiers present on seagrass
blades at mean pH 7.7 where the total mass of
epiphytic calcium carbonate was 90 per cent lower
than that at pH 8.2. These findings suggest that
ocean acidification may have dramatic effects on
the diversity of seagrass habitats and lead to a
shift in the biogeochemical cycling of both carbon
and carbonate in coastal ecosystems dominated
by seagrass beds.

Keywords: acidification; CO2; carbonate production;
calcareous epibionts; coralline algae

1. INTRODUCTION
One-third of the CO2 released into the atmosphere

through human activities is taken up by the ocean

(Sabine et al. 2004). As a result, the increasing CO2

partial pressure ( pCO2) in surface water lowers the

pH. This decreases the carbonate ðCO2K
3 Þ ion concen-

tration and lowers the saturation state (U) of calcium

carbonate (CaCO3). Global ocean models forced

with atmospheric CO2 projections predict surface

reductions of 0.2–0.4 pH units over the course of this
Electronic supplementary material is available at http://dx.doi.org/
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century (Caldeira & Wickett 2005). This could have
a major impact on calcifying organisms such as corals,
coralline algae, foraminifera and coccolithophorids
(see a review by Kleypas et al. 2006). Most studies
have investigated the response of marine calcifiers to
elevated pCO2 (and lower pH) through in vitro and
short-term experiments on isolated organisms and
mesocosms, an approach that raises questions about
the impacts of containment and whether acute
responses are representative of future, long-term
effects. There is a lack of information about the
impacts of lower pH on marine organisms in their
natural environment and on their capacity to
acclimatize and adapt to elevated pCO2 over long
periods of time. Areas with naturally elevated pCO2

have the potential to provide additional insights into
those obtained by modelling and mesocosm experi-
ments, such as indicating which groups of organisms
can acclimatize and adapt to long-term acidification.
Here, we investigate the response of calcareous
epibionts of Posidonia oceanica to reductions in pH in
aquaria and at a volcanic CO2 vent area recently
described by Hall-Spencer et al. (2008). These calcar-
eous epibionts are of paramount importance in the
carbon cycle of seagrass ecosystems, being major
contributors to CO2 fluxes through their high CaCO3

production and dissolution (Barrón et al. 2006).
2. MATERIAL AND METHODS
Fieldwork was conducted from 23 to 27 April 2007 at Castello
Aragonese (Island of Ischia, Italy; 40843.840 N, 13857.080 E; figure 1),
where volcanic vents occurred in shallow waters emitting 1.4!
106 l dK1 of gas comprising 90–95% CO2, 3–6% N2, 0.6–0.8%
O2, 0.2–0.8% CH4 and 0.08–0.1% Ar, without toxic sulphur
(Hall-Spencer et al. 2008). The work was carried out within a
P. oceanica meadow at five stations situated at approximately 3 m
depth in order to have similar incident irradiance (approx.
7500 lx dK1). One reference station (St 1) was situated 400 m from
the gas vent area, three stations (St 2–4) were adjacent to the vents
and one station (St 5) was in the vent area. Posidonia oceanica shoot
density and productivity were homogeneous between stations except
at station 5 where shoot density was 30 per cent higher (Hall-Spencer
et al. 2008). Bottom water samples were collected for determination
of pH and total alkalinity (TA) on eight cardinal points distributed
on a 6 m diameter circle (figure 1) at each station at around midday.
pH (in total scale; DOE 1994) was measured immediately after
collection on 2–4 different days, including calm and rough con-
ditions, in order to determine variability due to sea state. Salinity and
temperature were also assessed using an YSI/25 FT probe. Samples
for determination of TA were prepared and stored according to DOE
(1994) and were measured by potentiometric Gran titration. Par-
ameters of the carbonate system were calculated from pH, TA,
temperature and salinity using the program CO2SYS (Lewis &
Wallace 1998). At each station, P. oceanica blades were collected
manually in eight 1 m2 quadrats situated on the eight cardinal points
previously described. Ten 8–9 mm width blades were selected
haphazardly from each quadrat and the distal 15 cm were sampled.
Epibionts were identified and their per cent surface cover was
estimated. The mass of CaCO3 per blade was assessed by weighing
the blades before and after dissolving CaCO3 by an acid treatment
(see Perry & Beavington-Penney 2005). To test the short-term effect
of increased CO2, the distal 12 cm of P. oceanica blades heavily
encrusted with coralline algae (50–70% cover) were collected at
station 1 on 16 September 2004. Two sets of nine blades were
maintained in two 5 l aquaria filled with water from station 1, one
bubbled with CO2 to maintain a pH of 7.0 and the other bubbled with
air (pH 8.1, control). The coralline algal cover was estimated after two
weeks. Correlation between environmental parameters and epibiont-
related parameters was examined using Pearson’s correlation test.
3. RESULTS
Coralline algae (Hydrolithon boreale, Hydrolithon crucia-
tum, Hydrolithon farinosum, Pneophyllum confervicola,
This journal is q 2008 The Royal Society
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Figure 1. Locations of the sampling stations (St 1–5) at the Castello Aragonese site. Details of the eight sampling points
(S, south; SE, southeast; E, east; NE, northeast; N, north; NW, northwest; W, west; SW, southwest) are given.
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Pneophyllum fragile and Pneophyllum zonale) dominated

the epiphytic community at stations 1–4 (18–69%

cover), where the pH averaged 8.0–8.2, but were absent

at station 5 where the mean pH was 7.7 (table 1;

figure 2). Bryozoans (Callopora lineata, Electra posidoniae,

Microporella ciliata and Tubulipora spp.) covered 1–6%

of the blade surface, while non-calcified organisms

such as hydrozoans had less than 1 per cent cover.

Coralline cover and epiphytic CaCO3 were highly

correlated with pH and the other parameters of

the carbonate chemistry (Pearson’s correlation test,

p!0.0001), except TA ( pO0.05) that was homo-

geneous between stations, while bryozoans (rZ0.28,

pZ0.08) and hydrozoans (rZK0.29, pZ0.07) were

not. Correlations between pH and epiphytic cover

and CaCO3 were independent of seagrass meadow

parameters being highly significant ( p!0.001) at

stations 1–4 where the meadow was homogeneous. In

aquaria, epiphytic coralline algae were completely

dissolved after two weeks at a pH of 7.0, whereas

control samples showed no discernable change in

coralline cover. No significant correlations were

observed with the other measured environmental

parameters such as temperature ( pO0.05). Epiphytic

CaCO3 and surface cover did not show any significant

relationships with environmental parameters within a

station ( pO0.05). In particular, the pH was spatially

homogeneous within a station in spite of temporal

variability from day to day, with the lowest values on

calm days and increasingly from station 1 to 5 (see

the electronic supplementary material).
Biol. Lett. (2008)
4. DISCUSSION
The present study shows a significant reduction

in epiphytic coralline algal cover with increasing

acidification of seawater due to natural CO2 vents.

Although a range of factors may be responsible for this

observed shift in seagrass epiphytism, lowered pH and

reduced calcite saturation levels are the most likely

factors affecting coralline algal cover. Coralline algae

were absent where the pH periodically fell below 7 and

their calcimass was greatly affected where the pH

ranged from 7.7 to 8.2. Our preliminary short-term

shock experiment conducted in an aquarium at pH 7

verified that elevated pCO2 levels could cause the

dissolution of calcareous epiphytes of the Mediterra-

nean seagrass P. oceanica. Previous studies have shown

that tropical crustose coralline algae are highly sensitive

to lowered pH in mesocosm experiments. Jokiel et al.

(2008) reported skeleton dissolution rather than growth

for the species Lithophyllum, Hydrolithon and Porolithon

sp. at a pH of approximately 7.9, relative to a normal

pH of 8.2, while Kuffner et al. (2008) reported a drop

in recruitment rate and per cent cover of 78 and 92

per cent, respectively, at a pH of 7.9. Accordingly, we

found more than a 50 per cent decrease in epiphytic

crustose coralline cover and CaCO3 mass at station 4,

where the mean pH was 8.0. This result for coralline

algae exposed to low pH for a long time confirms

predictions based on short-term experiments on

isolated organisms and mesocosms. Located in the

vicinity of the vent area, stations 2–5 may be expected

to reach lower pH than those reported. In addition, the

http://rsbl.royalsocietypublishing.org/
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Table 1. Mean (Gs.d., nZ16–32) environmental (temperature, salinity and parameters of the carbonate system) and biological (CaCO3 mass and surface cover of epibionts) parameters
at each station. (Minima and maxima are given in parentheses.)

St 1 St 2 St 3 St 4 St 5

environmental parameters
temperature (8C) 19.4G0.2 (19.0–19.5) 18.5G0.0 (18.5–18.5) 19.0G0.0 (19.0–19.0) 19.2G0.2 (19.0–19.5) 19.3G0.3 (19.0–19.5)
salinity 38.0 38.0 38.0 38.0 38.0
pH (total scale) 8.17G0.01 (8.15–8.18) 8.17G0.03 (8.13–8.20) 8.11G0.03 (8.05–8.15) 8.00G0.16 (7.67–8.16) 7.66G0.32 (6.98–8.14)
TA (mEq kgK1) 2514G6 (2504–2524) 2515G5 (2506–2520) 2512G5 (2505–2520) 2531G3 (2528–2536) 2508G7 (2497–2515)
pCO2 (ppm) 311G7 (298–324) 306G24 (280–349) 365G27 (325–435) 549G258 (319–1187) 1564G1169 (335–6273)
CO2 (mmol kgK1) 10G0 (10–11) 10G1 (9–12) 12G1 (11–14) 18G8 (10–38) 51G38 (11–202)

CO2K
3 (mmol kgK1) 274G5 (265–282) 270G12 (249–284) 246G11 (220–264) 209G54 (108–270) 124G80 (24–262)

HCOK
3 (mmol kgK1) 1849G12 (1830–1871) 1858G29 (1824–1909) 1914G27 (1871–1978) 2025G132 (1877–2269) 2207G195 (1873–2450)

DIC (mmol kgK1) 2133G7 (2121–2146) 2138G18 (2117–2170) 2172G17 (2146–2212) 2252G86 (2157–2416) 2382G147 (2145–2676)
Ucalcite 6.39G0.11 (6.18–6.58) 6.31G0.28 (5.82–6.63) 5.75G0.25 (5.14–6.16) 4.88G1.26 (2.53–6.30) 2.90G1.87 (0.56–6.11)
Uaragonite 4.16G0.07 (4.02–4.28) 4.10G0.18 (3.78–4.31) 3.74G0.17 (3.34–4.00) 3.17G0.82 (1.65–4.09) 1.89G1.22 (0.36–3.98)

biological parameters
CaCO3 (mg bladeK1) 41G6 (4–64) 24G10 (0–80) 14G10 (0–51) 11G8 (0–51) 3G1 (0–23)
corallines (% cover) 69G15 (10–95) 61G25 (3–95) 18G22 (0–80) 29G29 (0–95) 0G0 (0–0)
bryozoans (% cover) 2G5 (0–30) 4G7 (0–30) 6G9 (0–35) 1G3 (0–15) 2G3 (0–21)
hydrozoans (% cover) 0.2G0.5 (0–3) 0.2G0.5 (0–3) 0.2G0.6 (0–3) 0.1G0.5 (0–3) 0.3G0.5 (0–8)
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bryozoans, were able to survive pH lower than 7 and
tolerated high temporal pH fluctuations of more than 1
unit. The mineralogy of the bryozoans may explain
the differences in their ability to resist to low pH. The
skeleton of coralline algae is high magnesian calcite
with Mg concentration varying from 3.5 to 6 per cent
(Milliman 1974). The mineralogy of encrusting species
of bryozoans tends to be calcitic but have a lower Mg
content than coralline algae (0.1–3% Mg; Milliman
1974), which makes them more resistant to chemical
dissolution at low pH.

The decreases in pH measured in the present
study (0–0.5 units) are close to the range predicted
for surface pH reductions by the end of the century
(0.2–0.4 units; Caldeira & Wickett 2005). The
sensitivity of coralline algae to projected seawater
acidification may thus lead to drastic changes in the
well-known high diversity of seagrass meadows
(Hemminga & Duarte 2000) and their rate of
carbonate production. Coralline algae pioneer the
colonization of seagrass, making the blade more
hospitable for other species such as diatoms, sponges,
foraminifera, worms or turf algae (Corlett & Jones
2007). The decrease in the per cent cover of epiphytic
coralline algae could therefore affect a large range of
epiphytic organisms and cause subsequent changes in
the associated food webs. Conversely, the seagrass
P. oceanica itself was remarkably tolerant of low pH
(Hall-Spencer et al. 2008). Seagrass photosynthetic
rates have been shown to be higher at low pH (6–7)
than at normal pH (8.2; Invers et al. 2001). Seagrasses
could also benefit from the exclusion of encrusting
epibionts since the presence of epibionts on their
blades can reduce their photosynthetic rate both by
acting as a barrier to carbon uptake and by reducing
light intensity (Sand-Jensen 1977). Coralline algae
are of significant importance, especially in the north-
western Mediterranean Sea where they are the major
contributors to biogenic carbonate production, and
their contribution to sediment accumulation in
P. oceanica meadows is suggested to be significant
(Canals & Ballesteros 1997). They also contribute to
a high CaCO3 dynamic that significantly influences
CO2 fluxes in seagrass ecosystems (Barrón et al.
2006). Our results suggest that CaCO3 production by
epiphytic coralline algae may decrease by more than
50 per cent by the year 2100. Such a decrease may
lead to drastic changes to local sediment budgets and
biogeochemical cycles of carbon and carbonate in
shallow-water coastal systems.
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